

MAPK 3AK

Преобразование химической энергии в электрическую

Существующая технология преобразования химической энергии топлива в электрическую с помощью Двублочная электростанция. механических устройств. Одноблочная электростанция Газовая турбина CH4 выхлопные горячие Керосин самолетного вода газы типа Бурый уголь Бойлер понижающий Природный газ редуктор Бойлер Мазут Электро енератор Пар Пар Пароваа Система высокого высокого турбина Линии онденсации давления давления Трансфор электро 😽 мятого маторы Редуктор Паровая пертедач пара Редуктор 🗆 турбина Электро Трансформаторы Система генератор Э лектро подготовки генератор воды Общий КПД 35-40% Система конденсации мятого пара Slid 1 Общий КПД 55 -60% Система подготовки воды

▲ Figure 1. Hydrogen enters the fuel cell and is oxidized at the anode to form protons. The electrolyte material conducts ions, but not electrons, so electrons are forced into the external circuit. At the cathode, oxygen is reduced to water

▲ Figure 3. These 15-MW molten carbonate fuel cells (MCFCs) began operation in Bridgeport, CT, in 2013. Photo courtesy of Fuel Cell Energy.

Fuel Cell	Electrolyte*	Operating Temperature	Stack Size	Efficiency	Applications	Advantages	Challenges
Polymer Electrolyte Membrane (PEM)	Perfluoro- sulfonic acid	<120°C	<1-100 kW	40-45%	Mobile power Portable power Backup power	Solid electrolyte Low temperature Quick startup Rapid load following	Expensive catalyst Sensitive to fuel impurities Relatively low efficiency
Alkaline (AFC)	Potassium hydroxide	<100°C	1–100 kW	60%	Space Military	Low temperature Quick startup	Extremely sensitive to CO ₂ in fuel and air Electrolyte man- agement is needed
Phosphoric Acid (PAFC)	Phosphoric acid	~200°C	5–400 kW	40%	Stationary power	Combined heat and power (CHP) capable	Expensive catalyst Sensitive to sulfur in fuel Long startup times
Molten Carbonate (MCFC)	Molten lithium, sodium, and/or potassium carbonate	600-700°C	300 kW	50%	Stationary power	High efficiency Fuel flexible CHP capable	High-temperature corrosion Long startup times Low power density Expensive
Solid Oxide (SOFC)	Yttria- stabalized zirconia	600-850°C	1 kW-2 MW	Distributed generation >50% Central >60%	Stationary power	Solid electrolyte High efficiency Fuel flexible CHP capable	High-temperature corrosion Reliability Long startup times Expensive

^{*} Conventional electrolytes are listed. Advanced electrolytes, such as alkaline exchange membranes, are an area of active research.

